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The van der Pol equation [1,2]

€x þ x ¼ �ð1� x2Þ _x; (1)

where � is a positive parameter, provides a model of a one-dimensional oscillatory system having a
unique limit cycle. It is of interest, both mathematically and from the viewpoint of future
applications to the natural and engineering sciences, to consider generalizations of this equation.
A nontrivial extension of Eq. (1) is

€x þ x ¼ �ð1� x2Þsignð _xÞ; (2)

where the ‘‘sign function’’ is defined to be, for real z,

signðzÞ ¼

þ1; z40;

0; z ¼ 0;

�1; zo0:

8><
>: (3)

The purpose of this communication is to present the results of our preliminary investigations on
Eq. (2). In particular, several of the mathematical properties related to this equation’s solutions
see front matter r 2004 Elsevier Ltd. All rights reserved.
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are obtained, an approximate analytical solution is calculated using the method of first-order
averaging, and the equation is numerically integrated by use of the nonstandard method of
Mickens [3].
The coupled, first-order system equations are

dx

dt
¼ y;

dy

dt
¼ �x þ �ð1� x2Þsign ðyÞ; (4)

and the equation determining the paths of trajectories in the ðx; yÞ phase space is

dy

dx
¼

�x þ �ð1� x2Þsign ðyÞ

y
: (5)

Observe that Eq. (5) is invariant under the transformation

x ! �x; y ! �y: (6)

This transformation corresponds to inversion through the origin and implies that if ðxðtÞ; yðtÞÞ is a
possible trajectory in phase-space, then ð�xðtÞ;�yðtÞÞ is also a trajectory [4].
From Eq. (4) it follows that Eq. (2) has a fixed point, or equilibrium solution, at ðx̄; ȳÞ ¼ ð0; 0Þ:

The stability of this fixed point can be determined by use of the following ‘‘energy’’ argument [4].
Define Rðx; yÞ as

Rðx; yÞ ¼
1

2

� �
ðx2 þ y2Þ: (7)

Differentiating this expression and replacing the derivatives, _x and _y; by the results in Eq. (4),
gives

dR

dt
¼ �jyjð1� x2Þ: (8)

Note that for jxj51; dR=dtX0; while for jxj41; then dR=dto0: The first fact implies that the
fixed point at ðx̄; ȳÞ ¼ ð0; 0Þ is unstable. The second result indicates that trajectories far from the
origin in phase space are attracted back to a neighborhood of the fixed space. This analysis [2,4]
indicates that Eq. (2) may have a limit-cycle solution.
An analytic approximation to the solutions of Eq. (2) can be determined by use of the method

of first-order averaging, also known as the method of slowly varying amplitude and phase [1,2,4].
The assumed solution takes the form

xðt; �Þ ¼ aðt; �Þ cos ½t þ fðt; �Þ	; (9)

where � is taken to be small, i.e.,

0o�51: (10)

The first-order expressions for aðt; �Þ and fðt; �Þ are [2]

da

dt
¼ �

�

2p

� � Z 2p

0

F ða cos c;�a sin cÞ sin cdc; (11a)

df
dt

¼ �
�

2pa

� � Z 2p

0

Fða cos c;�a sin cÞ cos cdc; (11b)
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where, for Eq. (2), F is

Fðx; _xÞ ! F ða cos c;�a sin cÞ

¼ ð1� a2 cos2 cÞsign ð�a sin cÞ

¼ �ð1� a2 cos2 cÞsign ða sin cÞ: ð12Þ

A direct, but elementary calculation gives

da

dt
¼

3�

4p

� �
½sign ðaÞ	 8

3
� a2


 �
;

df
dt

¼ 0: (13)

The solution for fðt; �Þ is

fðt; �Þ ¼ f0 ¼ constant: (14)

The first equation in Eq. (13) can be solved using the method of variable separation. Carrying out
this calculation gives

aðtÞ ¼

ffiffiffi
8

3

r
a0 þ

ffiffi
8
3

q� �
þ a0 �

ffiffi
8
3

q� �
exp �

ffiffiffi
6

p
�t=p

� �
a0 þ

ffiffi
8
3

q� �
� a0 �

ffiffi
8
3

q� �
exp �

ffiffiffi
6

p
�t=p

� �
2
64

3
75: (15)

Note that the asymptotic value of the amplitude is

lim
t!1

aðtÞ�!

ffiffi
8
3

q
¼ 1:633: (16)

These results clearly indicate the existence of a limit cycle for Eq. (2). After initial transients damp
out, all the solutions approach the (approximate) periodic solution

xðt; �Þ ’
ffiffi
8
3

q
cos ðt þ f0Þ: (17)

In contrast, the standard van der Pol equation has the first-order in � asymptotic
solution [1,2,4]

xvaPðt; �Þ ’ 2 cos ðt þ f0Þ: (18)

The above solution for Eq. (2) indicates that a stable limit cycle exists.
The following numerical integration scheme was used to numerically integrate Eqs. (4):

xkþ1 ¼ cxk þ fyk; (19a)

ykþ1 ¼ cyk � xkþ1 þ �½1� ðxkþ1Þ
2
	sign ðykÞ; (19b)

where Dt=step size in time; xk and yk are, respectively, approximations to xðtkÞ and yðtkÞ; where
tk ¼ ðDtÞk; with k-integer valued; and the functions c and f are

c ¼ cos ðDtÞ; f ¼ sin ðDtÞ: (20)

This numerical procedure is based on the nonstandard methods of Mickens [3]. Figs. 1 and 2
present typical numerical solutions. For Fig. 1, the initial conditions are ðx0; y0Þ ¼ ð0:0; 0:1Þ
and this situation gives a trajectory in the (x; y) phase-plane spiraling out to approach the
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Fig. 1. (a) Plot of xk versus k. (b) Plot of yk versus k. (c) Phase-space plot of yk versus xk: The values of the parameters

are � ¼ 0:5; Dt ¼ 0:01 with initial conditions x0 ¼ 0:0 and y0 ¼ 0:1:
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limit cycle. Similarly, in Fig. 2, the initial conditions ðx0; y0Þ ¼ ð0:0; 2:0Þ correspond to
trajectories approaching the limit cycle from the outside. All of these results are consistent
with the analytical approximation derived from application of the method of first-order
averaging.
In summary, both the method of first-order averaging and the numerical integration

results indicate that Eq. (2) has a unique, stable limit cycle determined from the numerical
integration is approximately 1.52, while the value from Eq. (16) is 1.63. This is excellent
agreement if note is made of the fact that the nonlinear term in Eq. (2) is a discontinuous
function of the velocity, _x: A future research topic will be to see if higher-order
averaging techniques can be applied to Eq. (2). This may provide better agreement between the
numerical and analytical calculated values for the limit-cycle amplitude under the requirement
0o�51: Since Eq. (2) is not of a form to which the Liénard–Levinson–Smith theorem [2] can be
applied, it would be of interest to derive a theorem, along with its proof, applicable for this
situation.
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Fig. 2. (a) Plot of xk versus k. (b) Plot of yk versus k. (c) Phase-space plot of yk versus xk: The values of the parameters

are � ¼ 0:5; Dt ¼ 0:1; with initial conditions x0 ¼ 0 and y0 ¼ 2:0:
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